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Paragangliomas are highly vascularised and often
heritable tumours derived from paraganglia, a diffuse
neuroendocrine system dispersed from skull base to the
pelvic floor. The carotid body, a small oxygen sensing
organ located at the bifurcation of the carotid artery in
the head and neck and the adrenal medulla in the
abdomen, are the most common tumour sites. It now
appears that mutations in SDHB, SDHC, and SDHD,
which encode subunits of mitochondrial complex II
(succinate dehydrogenase; succinate-ubiquinone
oxidoreductase), are responsible for the majority of
familial paragangliomas and also for a significant
fraction of non-familial tumours. Germline mutations in
complex II genes are associated with the development
of paragangliomas in diverse anatomical locations,
including phaeochromocytomas, a finding that has
important implications for the clinical management of
patients and genetic counselling of families.
Consequently, patients with a paraganglioma tumour,
including phaeochromocytoma, and a complex II
germline mutation should be diagnosed with hereditary
paraganglioma, regardless of family history, anatomical
location, or multiplicity of tumours. This short review
attempts to bring together relevant genetic data on
paragangliomas with a particular emphasis on head
and neck paragangliomas and phaeochromocytomas.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Paragangliomas are rare and unusual tu-
mours. The ongoing interest in paraganglio-
mas is largely driven by atypical facets of

their biology, including neurogenic origin, poten-
tial to develop throughout the body, endocrine
activity, induction by chronic hypoxic exposure, a
high proportion of heritable cases, imprinted
familial transmission pattern, and inherited
mitochondrial complex II defects in the aetiology.
Paragangliomas arise from paraganglia, a collec-
tion of neuroendocrine tissues and small organs
with a common embryological origin and histo-
logical structure that are distributed throughout
the body, starting from the middle ear and the
skull base and extending into the pelvic floor.1 The
normal paraganglia play important roles in
organismic homeostasis either by acting directly
as chemical sensors or by secreting catecho-
lamines in response to stress.

The systemic distribution of paragangliomas
leads to their recognition and management by
multiple medical disciplines. Paragangliomas have
been traditionally evaluated in two categories:

those in the head and neck region with the carotid

body as the major site and those located below the

head and neck with the adrenal medulla as the

major site. This anatomical distinction also reflects

differences in autonomic functions and the endo-

crine activity of normal paraganglia. The paragan-

glia in the head and neck region are anatomically

associated with the parasympathetic nervous sys-

tem and are located in the vicinity of major arteries

and nerves, whereas the adrenal medulla and other

paraganglia below the head and neck are more

closely associated with the sympathetic nervous

system. The carotid body (CB) and other head and

neck paraganglia often lack the endocrine activity

possessed by the adrenal medulla. Consequently,

while most patients with head and neck paragang-

liomas (HNPs) present with an asymptomatic,

slow growing mass, patients with phaeochromocy-

tomas that often originate from the adrenal

medulla are recognised by hypertensive crises and

paroxysmal symptoms induced by high circulating

catecholamines. The endocrine activity forms the

basis of chromaffin reaction displayed by the

catecholamine secreting cells of adrenal medulla,

in the presence of dichromate containing fixatives.

On the basis of negative or equivocal chromaffin

reaction of the CB cells, the head and neck

paraganglia are sometimes referred to as non-

chromaffin paraganglia, although lesser amounts

of catecholamines are also present in the CB.

Paraganglia throughout the body have similar

morphology and, as discussed below, they have

some functional overlap. The unity of the paragan-

glionic system has been further suggested by the

observation that germline mutations in mito-

chondrial complex II subunits predispose to both

HNPs and phaeochromocytomas. These findings

suggest that paragangliomas in diverse locations

can be induced by common pathophysiological

mechanisms triggered by complex II gene defects.

This brief review will attempt to converge data on

the genetic aspects of paragangliomas with par-

ticular emphasis on the HNPs and phaeochromo-

cytomas, the two most common tumour locations.

AN OVERVIEW OF PARAGANGLIOMAS
Head and neck
Zak and Lawson2 listed nearly 20 distinct ana-

tomical locations for the head and neck paragan-

glia. The carotid body is the major paraganglion

and is also the most common tumour location.

Other common locations include jugular, vagal,
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tympanic, and aortic paraganglia. HNPs derive from the

hormonally silent non-chromaffin paraganglia, which prima-

rily have sensory innervation and function as chemoreceptors.

Almost every physiological and pathological parameter of the

CB has been linked to its oxygen sensing function.

The CB senses hypoxia and subsequently induces an

increase in the ventilation and heart rates by stimulating the

central respiratory centres via afferent glossopharyngeal

nerves. Although a large body of data is available on the

molecular mechanisms of oxygen sensing and signalling in

the CB, how reduced oxygen levels are initially sensed and

which molecule(s) is involved is unknown.3 The neoplastic

enlargement of the CB has been linked to chronic hypoxic

stimulation of the oxygen sensing chief cells.4 This observation

led to the hypothesis that the mitochondrial complex II,

defective in PGL, may be pivotal for CB’s oxygen sensing. The

readers are referred to Baysal5 for a more detailed discussion of

the response of the CB to chronic hypoxia vis à vis PGL and

other genetic epidemiological aspects of HNPs.

Adrenal medulla
The paragangliomas located below the head and neck most

commonly occur in the adrenal medulla and are convention-

ally referred to as phaeochromocytomas. The physiological

function of the adrenal medulla is to help the organism to

cope with stresses such as cold, hypoglycaemia, haemorrhage,

immobilisation, and hypoxia, by secreting catecholamines

(dopamine, adrenaline, and noradrenaline).6 Thus, the adre-

nal medulla contributes to the organism’s “fight or flight”

response mediated by the sympathetic nervous system. Extra-

adrenal paraganglionic cell clusters and organs include the

organ of Zuckerkandl, prevertebral and paravertebral thoraco-

abdominal and pelvic paraganglia, and other ganglia in ovary,

testis, vagina, urethra, prostate, bladder, and liver.2

Most catecholamine secretion from adult adrenal medulla

occurs following nervous stimulation by preganglionic fibres

or in response to circulating hormones. However, both

normal7 and neoplastic8 adrenal medullary cells possess direct

hypoxia responsiveness. For example, in sheep fetus9 and rat

newborn,10 hypoxia acts directly on the adrenal medullary

cells to stimulate catecholamine secretion before the develop-

ment of a functional innervation. It is also suggested that

extra-adrenal paraganglia, such as the organ of Zuckerkandl,

which lacks extensive innervation and functions as the major

source of catecholamines in utero, may also be stimulated

directly by hypoxia.11 Thus, although paraganglia in the adult

differ in their anatomical location, endocrine activity, and

innervation, they are united by their common embryological

origin, similar morphology, hypoxia responsiveness, and a role

in acute organismic homeostasis.

INCIDENCE OF PARAGANGLIOMAS
Both head and neck and abdominal paragangliomas are

extremely rare. A limited amount of population data is available

to obtain a reliable estimate of paraganglioma incidence per

year, especially for those located in the head and neck. Further

complicating the assessment of the true incidence is the

increased frequency of HNPs among high altitude dwellers. The

incidence of HNPs appears to be 10 times higher among

residents of the Andean mountains.12 It is also almost certain

that the clinical incidence of paragangliomas is lower than the

necropsy incidence owing to the often asymptomatic and clini-

cally favourable nature of the tumours. A population based sur-

gical incidence of 1/1 000 000 was reported for HNPs by Ooster-

wijk et al13 in reference to total surgically treated cases in The

Netherlands. Higher necropsy incidences of 1/386014 and

1/13 40015 were reported for carotid body paragangliomas. Com-

parison of surgical and necropsy incidences suggests that most

HNPs are not clinically recognised or operated upon.

More studies have been conducted on the population based

clinical incidence of phaeochromocytomas per year. The

estimates vary between 0.416 to 9.517/1 000 000. Other reported

estimates are 1.55,18 1.9,19 2.06,20 and 2.121/1 000 000 with a

median value of ∼ 2/1 000 000. The necropsy incidences are

higher within a range of 1/74222 to ∼1/2050.23 24 Thus, both

clinical and necropsy incidences of phaeochromocytomas

appear to be several fold higher than those of HNPs.

The clinical incidence of paragangliomas other than the

HNPs and phaeochromocytomas is less clear. An estimate of

such non-head and neck, non-phaeochromocytoma paragan-

gliomas could be obtained from the distribution of tumours in

236 paraganglioma patients.25 This study suggests that the

frequency of such atypically located paragangliomas is nearly

45% of that of HNPs. Thus, the yearly clinical incidence of all

paragangliomas (HNPs + phaeochromocytomas + other

paragangliomas) can be approximately estimated as

(1+2+0.45)/1 000 000 which corresponds to ∼ 1/300 000. This

is likely to be a conservative estimate and the yearly incidence

may be expected to rise with the advent of better screening

methods and clinical awareness.

PROPORTION OF FAMILIAL PARAGANGLIOMAS
The proportion of HNPs with a positive family history has

been variably estimated from 9.5% in a US clinical sample26 to

50% in a Dutch clinical sample.27 A recent analysis of an unse-

lected set of patients managed in two US clinics uncovered a

positive family history in ∼25% of HNPs.28 An additional 10%

of patients reported multiple head and neck tumours without

a family history. In most familial cases of HNPs, there is no

report of increased frequency of non-paraganglionic tumours.

Carney’s triad, the association of paragangliomas with gastric

leiomyosarcoma and pulmonary chondroma, may have a dis-

tinct aetiology and there is limited evidence to suggest a

familial basis for this rare condition.29 Recently, a new

autosomal dominant syndrome characterised by paraganglio-

mas and gastric stromal sarcomas and distinct from Carney’s

triad has also been described.30 HNPs were occasionally

observed in von Hippel-Lindau disease (VHL),31–34 multiple

endocrine neoplasia type 2 (MEN2),35 36 and neurofibromato-

sis 1 (NF1).37 However, no “HNP only” family has so far been

reported with a germline mutation in VHL, RET, or NF1, the

causative genes of these multitumour syndromes.

Phaeochromocytomas are frequently observed in kindreds

with VHL, MEN2, or, less frequently, NF1.38 39 Familial cases of

phaeochromocytomas without any syndromic stigmata have

also been described.40 41 It has been suggested that up to 50% of

such isolated familial phaeochromocytomas42 43 can be caused

by certain missense mutations in the VHL gene.

THE GENETIC BASIS OF FAMILIAL
PARAGANGLIOMAS
Germline mutations in the mitochondrial complex II genes,

SDHB, SDHC, and SDHD, cause hereditary paraganglioma

(PGL) (table 1). SDHB (PGL4) at chromosome 1p36,44 SDHC
(PGL3) at chromosome 1q21,45 and SDHD (PGL1) at chromo-

some 11q2346 encode three subunits of mitochondrial complex

II (succinate dehydrogenase; succinate-ubiquinone oxidore-

ductase), a heterotetrameric complex that is involved in the

aerobic electron transport chain and in the Krebs cycle.47 SDHD
was the first gene to be mapped48 and positionally cloned in

PGL families.46 The SDHD gene is composed of four exons and

encodes a protein of 159 amino acid. SDHC was independently

mapped49 and a mutation was identified in a single German

PGL family.45 The SDHC gene is composed of six exons and

encodes a protein of 169 amino acids. SDHB mutations were

identified by candidate gene analysis and direct sequencing in

small families without previous gene mapping.44 The SDHB
gene is composed of eight exons and encodes a protein of 280

amino acids. Another PGL locus, mapped to chromosome
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11q13 (PGL2) by linkage in an extended Dutch family,50

remains unconfirmed. No other loci have been implicated in

familial paragangliomas. Germline mutations in SDHA, the

fourth subunit of mitochondrial complex II, results in an

entirely different phenotype characterised by optic atrophy,

ataxia, myopathy, and Leigh syndrome.51–53 Possible mecha-

nisms of this phenotypic dichotomy resulting from complex II

mutations have been recently discussed.54

The nature of the germline mutations in complex II subunits
(table 1) predicts loss of function of the mutant variants.54 The
subsequent somatic loss of the non-mutant alleles (that is loss
of heterozygosity, LOH) in the tumours45 46 suggests that these
genes function as tumour suppressors in the paraganglionic
system. However, the molecular steps linking loss of complex II
subunits to cellular proliferation are unknown. It has recently
been shown that complex II activity is selectively and
completely lost in PGL tumours with SDHD mutations.55 The
subsequent overexpression of several hypoxia inducible genes in
paragangliomas55 56 is in harmony with the hypothesis that loss
of complex II mimics chronic hypoxic stimulation, which leads
to adaptive proliferation of the paraganglia.5

The transmission pattern of SDHD mutations shows strict
parent of origin effects.27 48 57 The disease phenotype is
transmitted only through the fathers, whereas mothers do not

transmit the disease. This transmission pattern has not yet

been violated in any PGL family with an SDHD mutation.55 58–62

The presence of SDHD founder mutations63 64 clearly indicates

that this sex specific transmission effect operates over multiple

generations and therefore is reversible in gametes. This obser-

vation strongly suggests that SDHD is subject to genomic

imprinting, although the exact molecular mechanisms remain

unknown. The SDHD gene shows biallelic expression in

various tested tissues.46 There is no evidence for a parent spe-

cific disease transmission in families with SDHC and SDHB
mutations.44 62 65 This suggests that the sex specific transmis-

sion pattern in PGL1 is not the result of an obscure functional

mechanism induced by loss of complex II, but a locus specific

epigenetic phenomenon operating on the SDHD gene.

PREVALENCE OF MITOCHONDRIAL COMPLEX II
GERMLINE MUTATIONS IN PARAGANGLIOMAS
Head and neck paragangliomas
Familial head and neck paragangliomas
In the presence of a positive family history the germline

mutations in SDHD, SDHB, and SDHC account for the majority

of the HNPs. SDHD is the most commonly mutated gene with

26 distinct mutations described so far (table 1). Almost all

Table 1 Mutations in PGL genes

Gene cDNA mutations Protein change Phenotype Reference

SDHB (PGL4) c 79 C>T R27X N-Phaeo 77
c.86-87 insCAG A29-Q30 insQ N-Phaeo 77
*c.136 C>G R46G N-Phaeo 77
c.174-175 GC>TT Q59X N-HNP 62
c.207-210 insC M71fs F-HNP 62
*c.268 C>T R90X F-Phaeo+HNP 44
*c.302 G>A C101Y N-Phaeo 77
c.392 C>G P131R F-HNP 62
c.574 T>C C192R N-Phaeo 77
c.587 G>A C196Y N-Phaeo 77
c.590 C>G P197R F-Phaeo 44
c.591 delC P197fs N-Phaeo 44
*c.713-718 delTCTC L240fs N-Phaeo 77
c.725 G>A R242H N-Phaeo 77
c.747 C>A C249X N-Phaeo 77

SDHC (PGL3) c.3 G>A ?Aberrant initiation F-HNP 45
SDHD (PGL1) c.1 G>C ?Aberrant initiation F-HNP 59

IVS1+2 T>G ?Aberrant splicing N-Phaeo 77, 79
c.36-37 delTG A13fs N-Phaeo 77
c.14 G>A W5X N-Phaeo 77
*c.33 C>A C11X N-Phaeo 77
c.54 insC A18fs F-HNP 60
*c.64 C>T R22X F-HNP+phaeo 55, 60
(c.95 C>T) S32X F-HNP 58
c.94-97 delCT S32fs F-Phaeo 61
c.106 C>T Q36X F-HNPs 46
*c.112 C>T R38X F-HNP, N-phaeo 46, 60, 62, 77, 79
c.120 insC P41fs F-HNP 60
c.191-192 delTC L64fs F-HNP 59
c.208 A>G R70G F-HNP 60
*c.242 C>T P81L F-HNP, N-HNP 46, 58–60, 62
*c.274 G>T D92Y F-HNP, N-HNP,N-Phaeo 46, 60, 77
c.276-278 delCTA Del Y93 F-HNP 59
c.284 T>C L95P N-HNP 60
c.305 A>T H102L F-HNP 46
c.325 C>T Q109X F-HNP 62
(c.336-337 insT) D113X F-HNP 58
c.361 C>T Q121X N-Phaeo 77
(c.341 A>G) Y114C F-HNP 58
c.381-383 delG L128fs F-HNP 62
*c.416 T>C L139P N-HNP, F-HNP 60
(c.441-443 delG) G148fs F-HNP 58
c.149 A>G H50R, polymorphism? MC, MCC 67

The cDNA numbering starts with the first nucleotide of the initiation codon.
The nucleotide changes in parentheses were deduced from the protein changes.
*Mutations described in multiple unrelated subjects.
F-, familial; N-, non-familial; HNP, head and neck paraganglioma; Phaeo, phaeochromocytoma; MC, midgut
carcinoid; MCC, Merkel cell carcinoma.
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HNPs with a positive family history are caused by two SDHD
founder mutations (D92Y and L139P) in The Netherlands.60

The genomic imprinting effect at the SDHD locus may have

helped the spread of the founder mutations by effectively

halving the overall penetrance of the mutant alleles. In

contrast, only 50% of the familial HNPs harboured SDHD
germline mutations in the US based sample.62 There is a

founder effect among the US patients who carry the SDHD
P81L mutation.46 64 However, because P81L and R38X are also

potentially recurrent mutations,62 some subjects with the P81L

mutation may not carry the founder mutation. The founder

effect and the recurrent mutational mechanisms make P81L

the first mutation to be tested in screening familial HNPs in

North America.

Another 20% of the familial HNPs are caused by SDHB
germline mutations in the US sample.62 Only a few SDHB
linked HNP families have been described so far.44 62 These

families, unlike the SDHD linked ones, are small with only two

or three affected subjects. Although recurrent mutations, such

as R90X, were reported in unrelated families, there is no evi-

dence for a founder mutation in SDHB.44 These findings

suggest that SDHB mutations may be associated with poorer

phenotypic fitness. This may lead to a quick removal of the

mutant alleles from the population gene pool and to the

observation of families with few affected subjects owing to

early recognition of the mutation carriers. Complex II

mutations could not be identified in up to 30% of familial

HNPs in the US sample.62 This could be partly because of the

PCR based approaches used for mutation screening, which

could miss certain gene defects such as large deletions and

rearrangements. It is also noteworthy that no additional

mutations have been found in the SDHC gene since the

discovery of an initiation codon mutation in a large German

family.45 Whether unconventional mutational mechanisms are

operative particularly on SDHC is unknown. There is no

confirmed evidence to suggest involvement of non-complex II

genes in the aetiology of familial HNPs.

Non-familial head and neck paragangliomas
In the absence of positive family history, complex II mutations

still play significant roles in the aetiology of HNPs. In The Neth-

erlands, ∼36% of the non-familial cases carry the two founder

SDHD mutations.60 Germline mutations in complex II genes

were less frequent in the non-familial HNPs in the US sample:

SDHD and SDHB mutations were found in 5% and 3% of the

subjects, respectively.62 Although these percentages may in-

crease with the use of more comprehensive mutation screening

methods, it is possible that some, perhaps most, non-familial

HNPs may have distinct and non-genetic aetiologies.

Phaeochromocytomas
Familial phaeochromocytomas
Identification of complex II germline mutations in familial

phaeochromocytomas suggests that PGL may manifest itself

predominantly with non-HNPs in certain pedigrees. Phaeo-

chromocytoma was the only finding in four subjects in a fam-

ily with SDHD mutation61 and in four subjects from two fami-

lies with SDHB mutations,44 suggesting involvement of

complex II genes in the aetiology of rare non-syndromic

familial phaeochromocytomas. However, two recent studies

failed to identify SDHD mutations in 10 familial

phaeochromocytomas.66 67 Interestingly, in three families with

SDHD mutations, the phaeochromocytomas were not confined

to the adrenal gland, but other abdominal paraganglia as well

as HNPs in some subjects were involved.44 61 The presence of

subjects with HNPs in some of the SDHD and SDHB mutant

familial phaeochromocytoma pedigrees indicates that identi-

cal mutations can induce tumours both in the head and neck

and in the abdominal region. Whether anatomical location of

paragangliomas is influenced by a specific complex II

mutation remains to be established. Phaeochromocytomas

were reported in only three of 63 (∼4.8%) Dutch familial HNP

subjects,63 suggesting that mutations in SDHD, at least for the

two Dutch founder mutations, are infrequently associated

with abdominal involvement.

Non-familial phaeochromocytomas
Phaeochromocytomas presenting without a family history of

VHL, MEN2, or NF1 can be associated with germline

mutations in the VHL and RET genes. The estimates of preva-

lence of occult germline mutations in RET in non-familial

phaeochromocytomas include 0/10 (0%),68 1/120 (∼0.8%).69

6/28 (∼21%),70 1/48 (∼2.1%),71 0/29 (0%),72 0/27 (0%),73 1/12

(∼8.3%),72 0/62 (0%),74 0/5 (0%),75 0/7 (0%),76 and 13/271

(∼4.8%).77 The prevalence estimates of occult germline muta-

tions in VHL in non-familial phaeochromocytomas are some-

what higher, including 1/48 (∼2.1%),71 1/5 (20%),75 2/62

(∼3.2%),74 1/27 (∼3.7%),73 6/68 (∼8.8%),78 30/271 (∼11%).77

Although these studies are not identical in their research

methodologies, when all data are combined the prevalences of

occult germline mutations in RET and VHL in non-familial

phaeochromocytomas are estimated as 22/619 (∼3.6 %) and

41/481 (∼8.5 %), respectively.

Analysis of non-familial phaeochromocytomas by Gimm et
al79 uncovered SDHD germline mutations in two of 18 (∼11%)

subjects. One subject with SDHD mutation later developed

head and neck tumours. Recently, analysis of SDHD in 271

non-familial phaeochromocytomas showed germline muta-

tions in 11 cases. Three other studies, however, failed to iden-

tify any germline SDHD mutations in a total of 80 non-familial

phaeochromocytomas.61 66 67 These studies suggest a combined

SDHD mutation rate of 13/369 (∼3.5%) in non-familial phaeo-

chromocytomas.

Mutations of the SDHB gene were uncovered in 12/271

(∼4.4%)77 and 1/20 (5%)44 non-familial phaeochromocytomas

with a combined estimate of 13/291 (∼4.5%). Altogether these

preliminary findings suggest that ∼8.0% of non-familial phaeo-

chromocytomas may harbour occult germline mutations in

SDHD and SDHB. These findings also suggest that co-occurence

of head/neck or extra-adrenal paragangliomas, either in the

same person or in other family members, may be indicative of

germline mutations in mitochondrial complex II genes.

Other paragangliomas and tumour types
The mitochondrial complex II genes are obvious candidates

for paragangliomas observed in atypical locations and in other

more common tumour types that show LOH at 11q23 and

1p36. For example, spinal paragangliomas are exceedingly rare

tumours of unknown origin and pathogenesis.80 They most

commonly occur at the level of the cauda equina and do not

appear to be associated with other paragangliomas. Further-

more, the spinal cord is not one of the known tumour

locations in PGL.63 Analysis of the SDHD gene in 20 spinal

paragangliomas showed G12S variant in one subject with a

cauda equina tumour.81 G12S and H50R variants were also

detected among midgut carcinoids and Merkel cell

carcinomas.67 These missense variants, however, do not meet

stringent criteria to qualify as a mutation: they are located in

the mitochondrial signal peptide, are not conserved across

species, and are not known to cosegregate with the disease

phenotype in any family. Furthermore, G12S, which was first

identified in the germline of a non-familial phaeochromocy-

toma patient,79 has been observed both in heterozygous and

homozygous conditions in phenotypically normal subjects.60

Thus, further studies are needed to prove that G12S and H50R

have phenotypic consequences. Finally, analysis of the SDHD
gene in 43 primary nasopharyngeal carcinomas, which show a

high degree of LOH at 11q23, did not show any germline

mutations, but a novel P81P silent variant.82
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THE CLINICAL INCIDENCE OF PGL
The clinical incidence of all paragangliomas and the prelimi-

nary data on the prevalence of SDHD and SDHB germline

mutations of the mitochondrial complex II genes now allow

us to estimate the clinical incidence of PGL. The incidence of

paragangliomas excluding phaeochromocytomas caused by

complex II germline mutations is clinical incidence (1.45/

1 000 000) × [proportion of familial paragangliomas (0.25) ×
frequency of germline mutations (0.7) + proportion of

non-familial paragangliomas (0.75) × frequency of germline

mutations (0.08)], which equals ∼0.34/1 000 000. The

incidence of phaeochromocytomas caused by complex II

germline mutations is clinical incidence (2/1 000 000) ×
frequency of germline mutation (0.08), which equals 0.16/

1 000 000. Thus, the total yearly clinical incidence of all para-

gangliomas caused by SDHD and SDHB mutations, that is,

PGL, is estimated as ∼1/2 000 000.

SUMMARY AND CONCLUSIONS
The development of paragangliomas in diverse anatomical

locations in subjects with SDHB, SDHC, and SDHD germline

mutations indicate that the paraganglionic system throughout

the body is a target in PGL. Thus, the possibility of complex II

germline mutations should be raised in the differential

diagnosis of all paragangliomas including phaeochromocyto-

mas. Whether certain subunit mutations are more strongly

associated with a given anatomical location, hormonal

activity, malignancy, age at onset, tumour multiplicity, and size

remains to be established. Other genetic loci and environmen-

tal factors may also affect phenotypic expression. So far, there

is no evidence for increased tumour susceptibility in

non-paraganglionic tissues in PGL.

Germline mutations in SDHB, SDHC, and SDHD account for

the majority of paragangliomas if there is a positive familial

history and SDHD appears to be the most commonly mutated

gene. Approximately 8% of all non-familial paragangliomas

also harbour occult germline mutations in the complex II

genes. Multiple paragangliomas in non-familial cases, regard-

less of their anatomical distribution, and, because of the rarity

of paragangliomas, the presence of two or more first or second

degree affected relatives should herald the possibility of

complex II mutations. However, more studies are required to

determine whether subjects with solitary paragangliomas and

no family history are likely to have complex II germline muta-

tions. In a recent study, 45 of 66 (68%) non-familial

phaeochromocytoma patients who had germline mutations in

VHL, RET, SDHD, or SDHB presented with solitary tumours.77

The high combined rate of germline mutations in these genes

in non-familial phaeochromocytomas may therefore justify

gene testing in subjects presenting with a single phaeochromo-

cytoma tumour. However, complex II gene mutations were dis-

covered only in one of 32 (∼3%) subjects with non-familial

HNPs presenting with solitary tumours.62 Thus, a recommen-

dation for gene testing seems to be currently premature for

sporadic patients presenting with a single HNP.

Genetic analysis has the potential to offer new opportuni-

ties in the clinical management of the paraganglioma patients

and their families. If germline mutations in complex II genes

are uncovered in a patient, a clinical search for additional

paragangliomas may be warranted. Early detection and

removal of a critically located HNP or a hormonally active

phaeochromocytoma may help reduce the risk of morbidity

and mortality.
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